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1. Summary
Over 50 percent of the integrated circuits (ICs) designed for modern U.S. weapon systems are commercial 
off the shelf (COTS) parts, primarily field programmable gate arrays (FPGAs), and are mostly 
manufactured outside of the United States. These parts are vulnerable to malicious alterations that could 
be inserted during the manufacturing process and remain undetectable. Such malicious alterations could 
contain hidden back doors enabling an attacker to gain control of the system, disable networks, leak 
confidential information, or degrade signal integrity. Most malicious attacks are performed by 
understanding the functionality of the ICs themselves. If a designer is able to conceal the functionality of 
an IC, then most of these attacks can be prevented. A technique called Logic Encryption has been 
developed to harden computer circuitry against these malicious threats by hiding the functionality of a 
design. The functionality of a design will be concealed until it is configured by a designer after fabrication 
and all critical computing components are under custody and control of the rightful owner of the 
technology. Logic encryption can be achieved by inserting additional gates like XORs and/or multiplexers 
such that correct outputs are produced only when specific inputs or keys are applied to these gates after 
manufacturing. In the technique described here, logic encryption is related to fault analysis in IC testing to 
develop an effective and efficient way to guide the insertion of key gates. This method is process 
independent and can yield valuable security benefits because one need not trust the fabrication, test, and 
other third party participants in the outsourced fabrication process model. Most importantly, this work 
will be used as an added layer of security to complement existing software and network security, 
especially within mission-critical systems. 
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2. Introduction 
Chip design is becoming increasingly vulnerable to malicious activities and alterations as fabrication 
foundries continue to move offshore. This trend leads to IC designs that are susceptible to cloning, 
tampering, and/or reverse engineering. These issues have raised serious concerns for the assured security 
of integrated circuits, especially those employed within mission-critical hardware for surveillance, 
communications, and weapons operations. Military electronic systems require a high level of confidence 
that the microprocessors being used are authentic and secured. For example, a custom microprocessor 
design can be easily altered to operate identically to the genuine device [1]. Alterations can be designed to 
disable the system intentionally or to compromise the system in some manner to leak sensitive 
information at any point in the future.  
 
In February 2008, the US Department of Justice announced that $78 million US dollars worth of 
counterfeit Cisco systems were imported from China the previous year. For instance, on January 4th, 
2008, two individuals faced federal charges for trafficking counterfeit Cisco products. The traffickers 
imported counterfeit computer network hardware, from an individual in China, and sold it to retailers 
throughout the United States. They also shipped counterfeit products directly to the Marine Corps, Air 
Force, Federal Aviation Administration, defense contractors, Federal Bureau of Investigation, universities 
and financial institutions. In a Business Week article on October 2nd, 2009, Melissa E. Hathaway, head of 
cyber security for the Office of the Director of National Intelligence, said that counterfeit products have 
been linked to the crash of mission-critical networks, and may also contain hidden ‘back doors’ enabling 
network security to be bypassed and sensitive data to be accessed. The US Department of Defense has 
recognized the potential national defense vulnerabilities caused by counterfeit devices within military 
systems [2].  
 
In the Technology Horizons report by former US Air Force Chief Scientist, Dr. Dahm, it is stated that one 
of the technology-derived challenges to Air Force capabilities is having cyber operations in un-trusted 
environments in both software and hardware [3]. This is because most providers of critical computing 
equipment and infrastructure for cyber systems originate from multinational foreign based manufacturing 
operations. Thus, the ability to regulate, supervise, and secure any manufacturing processes are out of US 
control and jurisdiction to ensure trust and integrity of the computing hardware components. In addition, 
one of the greatest risks to national security is the loss of the critical hardware containing secured and 
trusted computing architecture designs in the field. If critical deployed hardware is lost, captured and no 
longer under US control, it can be subject to reverse engineering. Therefore, it is critical to develop 
secured hardware technologies that inherently prevent tampering and reverse engineering. This research 
and development effort describes techniques applied to IC processor designs that will provide the 
mechanisms to maintain secure data integrity and information assurance for Air Force information 
processing and computing systems. In addition, this computing architecture can provide the foundation 
for future trusted designs irrespective of fabrication origin. Thus, it will eliminate national defense, 
information and cyber security risks and vulnerabilities due to exposure to untrusted semiconductor 
manufacturing foundries.  
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3. Technical Background 
The issue of hardware trojans and solutions to this problem have been studied extensively in recent years. 
In a technique called state-based obfuscation proposed by Chakraborty and Bhunia [4], finite state 
machines (FSMs) are inserted in the design which initially locks all processor functionality. Then, by 
using a secured key, the design can be unlocked causing the processor to be functional once again. The 
output of this FSM is connected to XOR gates with a few selected nodes of the circuit.  
 
An approach proposed by Jarrod Roy [5] is based on using XOR/XNOR gate-based obfuscation. In this 
technique, a node within the circuit or net is selected and replaced by an XOR/XNOR gate. One of the 
inputs to the inserted XOR/XNOR gate is a key bit while the other is the original signal for the selected 
net. The XOR/XNOR gates act as buffers with the correct key while they become inverters with an 
incorrect key. In addition, a chip activation protocol is implemented based on public-key cryptography for 
strong security within the IP holder and foundry.  
 
Finally, memory elements such as LUTs can also be inserted into a design. For example, four input LUTs 
can be inserted within various circuit paths. For each LUT, one input is selected as the true path and the 
other inputs are chosen to process random paths. Based on the LUT inputs, the output is selected from the 
contents of the respective LUT. The circuit will function correctly only when these elements are 
configured or programmed correctly. However, this approach incurs significant performance overhead.  
 

4. Technical Approaches 
The objective of this research effort is to develop techniques that prevent tampering during the design and 
manufacturing process of computing architectures. The resulting methodology will protect Air Force 
information computing systems hardware for air, space, and cyberspace computing applications.  
 
4.1 Approach Overview and Principles of IC Testing 

In XOR/XNOR based logic encryption [5], gates are inserted at random locations in a design. However, 
this approach does not guarantee that a wrong key will impact the output as its effects are not necessarily 
propagated to the output. This is similar to an IC testing scenario where the effect of a fault is not 
guaranteed to propagate to the output. In this approach, these two scenarios are related and ensure that the 
effect of using incorrect keys always propagates to the outputs.  
 
Manufactured ICs may contain defects for a variety of reasons such as shrinking technology dimensions. 
Thus, all manufactured ICs have to be tested to prevent defective chips from entering the supply chain. 
During IC testing, input patterns are applied to an IC and the response is observed at the outputs [6]. If the 
observed response is different from the correct response, that IC would be classified as faulty. IC testing 
is enabled by modeling the defects as faults and designing algorithms to determine the input patterns that 
excite those faults and propagate their impact on the outputs. Most of the defects can be modeled as either 
stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) where a net in the design can be forced to either logic 0 or logic 1, 
respectively.  
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4.2. Fault Analysis based Logic Encryption 

As traditional IC testing algorithms analyze the effect of faults in a circuit and provide ways to propagate 
their effects to the circuit output, they are leveraged here to perform logic encryption to guide key gate 
insertion [10-13]. The gates inserted during encryption are called key gates and include two different 
types: 1) XOR/XNOR gates and 2) multiplexers. 

In XOR/XNOR based encryption, XOR/XNOR gates are introduced into the circuit such that one input of 
the inserted gate is a key and the other input is a net in the original design, referred to here as the true net. 
Based on the key, the XOR/XNOR gate can either retain the true signal or invert it.  

In multiplexer based logic encryption, multiplexers are inserted such that one input of the multiplexer will 
be the true (original) net in the design. The other input of the multiplexer, referred as the false input, is 
another net in the design and the select line of the multiplexer is connected to the respective key bit. On 
applying the correct key value, the true net is selected, retaining the correct functionality of the design, 
otherwise, the functionality is modified by selecting the incorrect or false net.  

The encryption of a design is accomplished in such a way that any incorrect key causes an incorrect 
output. This is similar to the situation where an incorrect output is produced when the circuit has a fault 
which has been excited and propagated to the outputs. 

4.2.1. Fault Excitation 

Application of an incorrect key should change the logic value at the place where the corresponding key 
gate is inserted. Hence, applying an incorrect key can be associated with the activation of a fault. An 
example of a circuit with an excited fault can be seen in Figure 1. 

4.2.1.1. Fault Excitation: XOR/XNOR gates 

In the case of XOR/XNOR gates, fault excitation is always guaranteed on applying an incorrect key as the 
true signal gets inverted, i.e., either a stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) fault will be excited. Figure 
2(a) is a circuit encrypted with one XOR gate (E1). If an incorrect key (K1=1) is applied to the circuit, the 
value of net B is the negated value of net A. This is the same as exciting a s-a-0 when A=1 or s-a-1 when 
A=0 at the output of G7 as shown in Figure 1.  

Figure 1: A circuit with a stuck-at-0 fault. 
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4.2.1.2. Fault Excitation: Multiplexers 

In the case of multiplexer based key gates, the application of an incorrect key causes a false net to be 
selected instead of the true net. For example, Figure 2(b) shows a circuit encrypted with one multiplexer. 
If an incorrect key (K1=1) is applied to the circuit, the value of net Y gets the false value of the net F 
instead of the true value of the net T. For the input pattern 1X111, the values on T and F are 1 and 0, 
respectively. On applying an incorrect key a s-a-0 fault is excited at the output of G7 shown in Figure 1. 

4.2.2. Fault Propagation 

Not all incorrect keys can corrupt the output as the effects of an incorrect key may be blocked for some of 
the input patterns. This is similar to the scenario where not all input patterns can propagate the effect of an 
excited fault to the output.  

4.2.2.1. Fault Propagation: XOR/XNOR gates 

Considering the circuit in Figure 2(a), an input pattern of 01110 and an incorrect key (K1=1) leads to an 
output of 11 which is the same as the correct functional output. Thus, the output is correct even though 
the s–a–0 fault gets excited at the output of E1. 

4.2.2.2. Fault Propagation: Multiplexers 

Consider the circuit with multiplexer based logic encryption in Figure 2(b). The input pattern 01110 
excites a s-a-0 fault at the output of G7. However, the impact of the fault is blocked at G10, failing to 
corrupt the output O2. 

To propagate the effect of an excited fault, non-controlling values should be applied to the other inputs of 
the gates that are on the propagation path of the fault. Since not all input patterns guarantee the non-
controlling values to these gates, an incorrect key will not always corrupt the output. 

(a) (b) 
Figure 2: (a) A circuit encrypted with one XOR gate and (b) a circuit with one multiplexer. 
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4.2.3. Fault Masking 

Inserting a single key gate and applying an incorrect key is equivalent to exciting a single stuck-at fault. 
Inserting multiple key gates and applying incorrect keys is equivalent to exciting multiple stuck-at faults. 
However, when multiple faults are excited, some excited faults might mask the effect of others. 
Analogously, in logic encryption, when multiple key gates are inserted, the effect of one key gate might 
mask the effect of another. 
 
4.2.3.1. Fault Masking: XOR/XNOR gates 

When the key bits (K1 and K2) are 00 for the circuit shown in Figure 3(a), the correct functional output is 
00 for the input pattern ‘00000’. However, if the key bits are 11 (incorrect key), the effect introduced by 
the XOR gate E1 is masked by the XOR gate E2, and the circuit still produces a correct output at O2, i.e., 
a logic 0. Thus, similar to fault masking, the effect of one XOR gate can be masked by the effect of 
another XOR gate.  
 
4.2.3.2. Fault Masking: Multiplexers 

When the key bits (K1 and K2) 00 are applied to the circuit shown in Figure 3(b), the correct functional 
output at O2 is 0 for the input pattern ‘0X110’. However, if the key bits are 11 (incorrect key), the effect 
introduced by the multiplexer E1 is masked by the multiplexer gate E2, and produces a correct output at 
O2, i.e., a logic 0. Thus, similar to fault masking, the effect of one multiplexer can be masked by the 
effect of another multiplexer.  
 
4.3. Logic Encryption 
 
4.3.1. Hamming Distance 

If only one or more of the output bits are wrong and the other output bits do not change for an invalid key, 
then the attacker might figure out the functionality using the unaffected outputs. If all outputs are affected, 
then the output will be the exact complement of the correct output. Thus, an attacker may relate the 
outputs to the inputs. Ideally, if 50% of the output bits are affected, and if the set of affected outputs 
changes from one pattern to the other, then it is difficult for an attacker to relate the outputs and determine 
the functionality of the design. Hence, 50% of the output bits should be affected on applying an invalid 

 
 

(a) (b) 
Figure 3: (a) A circuit encrypted with two XOR gate (E1 and E2). (b) A circuit encrypted with 
two multiplexers (E1 and E2). 
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key. In terms of fault simulation, this problem can be stated as finding a set of faults which together will 
affect 50% of the outputs. 

4.3.2. Fault Impact 

A greedy iterative approach is used to insert key gates. In each iteration, the fault that has the potential of 
propagating to a maximum number of outputs dictates the location of the key gate to be inserted. For 
every iteration (except for the first), the key gates inserted at previous iterations are provided with random 
incorrect keys thereby emulating a multiple stuck-at fault scenario, and accounting for the previous key 
gate insertions. To insert a key gate, the location in the circuit must be determined where, if a fault occurs, 
it can affect most of the outputs for most of the input patterns. Fault impact [13] is used as defined by the 
following equation to identify such locations: 

Fault Impact =  (# of Test Patternss-a-0 x # of Outputss-a-0) + 
(# of Test Patternss-a-1 x # of Outputss-a-1).    (1) 

For any input pattern, depending upon the value at the control input of the gate either a s-a-0 or s-a-1 fault 
will be excited at the output of a gate. However, the effect of the fault will be observed at one or more 
outputs for only some of the input patterns. From a set of test patterns, the number of patterns that detect 
the s-a-0 fault (# Test Patternss-a-0) are computed for every net and the cumulative number of output bits 
that get affected by that s-a-0 fault (# Outputss-a-0). Similarly, for s-a-1 faults the terms # Test Patternss-a-1 
and # Outputss-a-1 are computed. The net with the highest fault impact points to the location where the key 
gate is to be inserted. 

4.3.3. Contradiction Metric 

As described in 3.2.1.3., fault excitation in multiplexer-based encryption will happen only if the value on 
the true net is different from the value on the false net. The true net has already been selected based on the 
fault-impact metric described in 3.3.2. The selection of the false net is done based on another metric, the 
contradiction metric [13], which aims at maximizing the probabilities of having complementary values on 
the true and the false nets to select the best false net: 

Contradiction Metric = (P0, true x P1, false) + (P1, true x P0, false), (2) 
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input: Netlist 
output: Netlist with key gates 
for i ← 1 to KeySize do 

foreach gate j ∈ Netlist do 
Compute Fault Impact (Test Patterns, Random Key); 

End 
Select the gate with the highest Fault Impact; 
Insert a Multiplexer and update the Netlist; 
Increment KeySize; 
Calculate the Hamming Distance (Test Pattern, Random Key)  between the obtained output and 

the correct functional  output; 
if Hamming Distance == 50% then 

Terminate 
end 
if KeySize == Max KeySize then 

Terminate 
end 

end 
Algorithm 1: A fault impact based algorithm to insert key gates in circuit path. 

where P0, true and P1, true are the probabilities of getting a 0 and 1 on the true net, respectively, while P0, false 
and P1, false are the probabilities of getting a 0 and 1 on the false net, respectively.  

It is also worth noting that false net selection should avoid combinational loops. For the multiplexer-
based encryption, a false net is selected based on the conditional probability with respect to the values on 
a true net.  

5. Simulation Results

The proposed technique is evaluated using the ISCAS-85 combinational logic benchmark circuits [7]. The 
HOPE fault simulation tool [8] was used to calculate the fault impact of each net in a given circuit where 
1000 random input patterns were applied to a netlist to observe the outputs of the unencrypted circuit. The 
fault impact was calculated for all possible stuck-at faults in each circuit. In multiplexer-based encryption, 
after selecting a true net, the contradiction metric was calculated for all possible nets and the net with the 
highest contradiction metric was selected as the false path. Valid and random incorrect keys were applied 
to an encrypted netlist and determined the Hamming distance between the corresponding outputs. 

Figures 4(a) and 4(b) show the Hamming distance for XOR/XNOR-based and multiplexer-based 
encryption schemes, respectively. The proposed XOR/XNOR-based and MUX-based insertions achieved 
50% Hamming distance for most of the benchmarks as the algorithm takes the fault propagation and 
masking effects into account. In these types of encryption, a fault is always excited on applying an 
incorrect key.  
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Table I shows the number of key gates required to achieve 50% Hamming distance between the correct 
and the incorrect output in XOR/XNOR-based and MUX-based encryptions for some of the ISCAS-85 
benchmark circuits. It can be inferred that the 50% Hamming distance objective can be achieved by 
inserting tens of XOR/XNOR gates in a design with a few thousand gates. This leads to low area 
overhead encryption. Such an effect is achieved because the technique identifies effective locations to 
insert the gates based on excitation, propagation, and masking principles from IC testing. 

(a) 

(b) 
Figure 4: Hamming distance between the outputs on applying a correct key and an 
incorrect key for different ISCAS-85 benchmark circuits. (a) XOR/XNOR-based 
encryption, (b) multiplexer-based encryption. 
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6. Demonstrations
Logic Encryption (LE) hides the functionality of the design through the process of adding additional gates 
to the original design [8]. These gates will act at keys, upon which a correct set of keys will allow the 
encrypted design to function correctly and an incorrect set of keys will produce incorrect functionality, 
i.e. wrong outputs. In this project, four versions of logic encryption were implemented for evaluation: 
combinational XOR, combinational MUX, sequential XOR, and sequential MUX. The designs were 
synthesized and loaded onto an FPGA and the results of the outputs verified via the RS232 port. 

The top-level diagram is shown in Figure 5. The RS232 module serves as the communication channel 
between the encrypted design and the user. Therefore, the user can interact with the design through any 
serial terminal program. The controller is a finite-state machine that will handle how the data is loaded 
into each module. The buffer will store the data until it is ready to be sent to either the RS232 or the 
encrypted module. The designs were implemented on a Digilent Atlys FPGA board and used the program 
Terminal [15] for the RS232 communication. The design was synthesized using Xilinx ISE Webpack and 
the bit file was downloaded using Digilent Adept. 

Figure 5: Top-level design for Logic Encryption. 

6.1. Logic Encryption Implementation of AES 
The Advanced Encryption Standard (AES) algorithm is a block cipher that operates on data in blocks of 
128-bits using a key size of 128, 192, or 256-bits [9]. Unlike its predecessor Data Encryption Standard 
(DES) which operates on a Feistel network, the AES algorithm works on a substitution permutation 
network using a 4x4 byte state matrix. There are four major operations: SubBytes, ShiftRows, 
MixColumns, and AddRoundKey each of which will modify the state matrix. Before the four major 
operations are performed, an initial RoundKey operation is added. These four operations will be looped a 
certain number of times depending on the key size used.  
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An Advanced Encryption Standard (AES) circuit [9] was implemented and the encrypted design was 
implemented on an FPGA. The AES circuit will perform the encryption correctly only when the correct 
key is applied to the circuit. 

6.1.1. AES Algorithm Details 

The SubBytes operation is a substitution transformation that performs a mapping of the state matrix with 
the S-Box. The resulting state matrix provides non-linearity. For example, if 𝑆𝑡𝑎𝑡𝑒1,1 = [𝐷𝐹] then the 
new 𝑆𝑡𝑎𝑡𝑒1,1 = [9𝐸].  

The ShiftRows operation moves the state matrix by a certain number of offset bytes. The first row of the 

Figure 6: S-Box [7]. 

TABLE 1: Number of key gates required to achieve 50% Hamming distance between the 
correct and the incorrect output in (a) XOR/XNOR-based encryption and (b) MUX-based 
encryption for some of the ISCAS-85 benchmark circuits. 

# of key gates 
Benchmark (a) XOR (b) MUX 

C17 2 18 
C432 26 66 
C499 38 210 
C880 125 207 

C1355 160 200 
C1908 61 194 
C3540 170 197 
C5315 212 209* 
C6288 33 82 
C7552 251 225* 

* For the multiplexer case, circuits C5315 and C7552 do not achieve 50% Hamming distance. The # of key
gates listed for these two cases is for the maximum Hamming distance possible. 
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state matrix is not shifted and remains constant. The second, third, and fourth rows are cyclically shifted 
by increments of one, i.e., the second row is shifted by 1, the third row is shifted by 2, and the fourth row 
is shifted by 3.  

The MixColumns operation performs a column by column multiplication with a constant matrix. The 
addition and multiplication of the matrix is performed over a Galois Field (GF) of 28. This means that 
unlike traditional arithmetic, the addition in GF(28) will be an XOR operation. The multiplication 
operation is similar to normal arithmetic. Here, if the state value is greater than 0x80, the process is to 
left-shift by 1 and then XORed with 0x1b to prevent overflow in the Galois field. If the state value is less 
than 0x80, a left-shift by 1 is performed as this is the same as multiplying by 2. 

The AddRoundKey operation is an XOR operation between the RoundKey and the state matrix. 

6.1.2. Design 

Logic Encryption hides the functionality of the AES design by adding additional gates into the original 
design. In this project logic encryption was implemented for the S-Box portion of the AES code as shown 
in Figure 9. This was done mainly because the Verilog code for the S-Box consists of combinational 
circuits only. The S-Box was encrypted with the secret key set to all zero, for the sake of simplicity. The 
design then was synthesized with Xilinx ISE and downloaded to an Atlys FPGA board.  

6.1.3. Simulation 

Two different simulations of the AES code were performed using Xilinx iSim. At first, the AES code was 
simulated without logic encryption with the simulation result shown in Figure 10. Logic encryption with 
XOR gates was performed in the S-Box and the results with a correct key and incorrect key are shown in 
Figures 11 and 12, respectively. In Figure 12, one bit of the LE key has been changed from the one in 
Figure 11 to produce an incorrect key. As a result, an avalanche effect is observed for the incorrect output 
of the AES ciphertext. In other words, after changing only one key bit more than half of the output bits 
are impacted.  

Figure 8: MixColumns matrix multiplication [7]. 

Figure 7: ShiftRows [7]. 
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Plaintext: 0x00112233445566778899aabbccddeeff 
AES key:   0x000102030405060708090a0b0c0d0e0f 
Correct LE key: 0x00000000000000000000000000000000 
Correct Ciphertext: 0x69c4e0d86a7b0430d8cdb78070b4c55a 
Incorrect LE key: 0x00000000000000000000000000000001 
Incorrect Ciphertext:  0xccbcf3b4ea75clbf2e0eeccaf0513259 

6.2. A Multiplier using Logic Encryption 
The 16x16 Multiplier is also known as the C6288 ISCAS-85 benchmark circuit. It consists of 2416 gates 
forming 240 full and half adders using a 15x16 matrix arrangement [11]. The multiplier takes in two 16-
bit inputs and outputs a 32-bit product.  

6.2.1. Design 

Similar to the AES design, the multiplier circuit is encrypted with the mux-based logic encryption and 
implemented on an FPGA board with RS232 module to allow for user interaction.  

6.2.2. Simulation 

Two models, one with logic encryption and one without logic encryption are simulated using Xilinx iSim. 
The two operands are 4660 (0x1234) and 22136 (0x5678). The LE key use for logic encryption is set to 
all zero. Using a calculator it is easy to verify that 4660 * 22136 is 103153760 (0x6260060) and the 
results agree with Figures 14 and 15. In Figure 16, 1-bit in the LE key was changed to generate an 
incorrect key and the new result becomes 26804320 (0x1990060), which is not the correct answer. 

Figure 9: Encrypted S-Box with keys. 

Figure 10: AES without encryption. 
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Figure 11: AES with encryption (Correct Key). 

Figure 12: AES with encryption (Incorrect Key). 
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Figure 13: ISCAS-85 C6288 circuit [11]. 

Figure 14: Multiplier without encryption. 

Figure 15: Multiplier with correct key. 
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Figure 16: Multiplier with incorrect key. 

6.3. Grain using Sequential XOR Logic Encryption 
Cryptographic algorithms are a key feature in secure and trusted hardware design. The overhead and 
resource usage of these algorithms are typically minimal due to the size of the overall design. However, 
for applications that required low memory and power usage such as an RFID tag, this may be difficult to 
achieve by using traditional block cipher algorithms. Grain is a stream cipher that is designed for low 
power and low resource count. As a part of the eSTREAM project, Grain was chosen because of its 
simplistic design with two shift registers, one linear and one non linear, and can support a key size of 128 
bits and an IV size of 96 bits. An overview of the Grain structure is shown in Figure 17; NFSR and LFSR 
are non-linear and linear shift registers, respectively. Functions g(x), f(x), and h(x) are polynomial. More 
detail specification can be found in the work of Hell et al. [12,16]. 

Figure 17: Grain Stream Cipher [10]. 
6.3.1. Design 

In previous logic encryption designs only the combinational portion of the design is encrypted. 
This does not give many options for designs that heavily depend on sequential circuit elements. 
In sequential LE, it is important to take into account how the fault impact metric will affect the 
gates with sequential elements in the path. Once this has been determined, the encryption is 
performed in the same process as used for the combinational XOR approach. The Grain VHDL 
code was obtained from [13] and implemented in the same fashion as shown in Figure 5. 
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6.3.2. Simulation 

Similar to the combinational XOR simulation, two versions of Grain were simulated. The Grain test 
vectors are obtained from [12]. Since Grain is a stream cipher, it will output the key stream of one bit 
every clock cycle. Therefore, a shift register was included to store 64bits at any point in time. The LE key 
for this design was set to 0x1122334455667788aabbccddeeff0000 as shown in Figure 19 and denoted as 
the obf_key signal.  

Grain Key:  0x00000000000000000000 
Grain IV:  0x0000000000000000 
Correct LE key:  0x1122334455667788aabbccddeeff0000 
Correct keystream:   0x7b978cf36846e5f4ee0b 
Incorrect LE key:   0x1122334455667788aabbccddeeff0001 
Incorrect keystream: 0x9f58bbe3d72d8abed72d 

Figure 18: Grain without encryption. 

Figure 19: Grain with correct key. 
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Figure 20: Grain with incorrect key. 

6.4. CRC using Sequential MUX Logic Encryption 
Cyclic redundancy check (CRC) is an error detecting code used to determine the data integrity of a digital 
transmission. It has been implemented in various communication protocols such as TCP/IP, USB, and 
GSM networks. Since the computation of CRC is done through a polynomial division using modulo two, 
it is easy to implement this in hardware using shift registers.  

6.4.1. Design 

The CRC implementation for USB token protocol was chosen was the main candidate. The VHDL source 
code was generated from [14] using the standard CRC5 which has a polynomial of x^5 + x^2 + 1. The 
CRC design then was encryption with the mux-based LE. 

6.4.2. Simulation 

Two versions of the CRC5 were simulated. As shown in Figure 21, for input data of 0x1234578, the CRC 
checksum is 0x1a. In the logic-encrypted design with a LE key of 0x4a6f7921 the output matches the 
original design (Figure 22). However, when an incorrect LE key is supplied the design will become 
unstable and an incorrect output results (Figure 23). 

Figure 21: CRC5 without encryption. 
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Figure 22: CRC5 with correct key. 

Figure 23: CRC5 with incorrect key. 

7. Conclusion
Fault analysis based logic encryption with XOR/XNOR gates achieves 50% Hamming distance between 
the correct and the corresponding wrong outputs when an invalid key is applied to the design. To improve 
the Hamming distance of multiplexer-based encryption, one can select the false net based on the 
conditional probability with respect to the values on the true net as opposed to the absolute probability. 
Alternatively, the fault analysis technique can be employed to guide the selection of false nets. Logic 
encryption can also be performed using a fault simulator that supports multiple stuck-at fault models to 
account for fault masking effects. Even though in this work the approach for encrypting combinational 
designs has been effectively demonstrated, one can also extend it to encrypt sequential designs. In 
addition, several logic circuits were implemented using logic encryption as proofs-of-concept with each 
design placed the on an FPGA board to verify the results of the outputs. 
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